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Curvature autocorrelations in domain growth dynamics
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Abstract. We show how the interface curvature autocorrelation function (ICAF) and associated struc-
ture factor (ICSF), of relevance in non-equilibrium pattern-formation problems where sharp interfaces are
present, provide new and interesting information on domain structure, as yet not visible via the order-
parameter structure factor (OPSF). This is done by discussing numerical simulations of model A (non-
conserved relaxational phase-ordering kinetics) in two-dimensional systems. The ICAF is Gaussian over
short distances and exhibits dynamical scaling and t1/2 power-law growth. We use it to show what the typ-
ical length-scale in the model A dynamics corresponds to physically and how it can be obtained uniquely,
rather than simply within a multiplicative constant. Experimental methods to measure the ICAF and/or
ICSF are still needed at this point.

PACS. 05.20.-y Classical statistical mechanics – 82.20.Mj Nonequilibrium kinetics – 71.45.Gm Exchange,
correlation, dielectric and magnetic functions, plasmons – 02.60.Cb Numerical simulation; solution of
equations

1 Introduction

Dynamics of pattern-formation in non-equilibrium sys-
tems is a very challenging problem [1]. It is ubiquitous
in nature and its understanding is of interest and impor-
tance in physical and biological sciences. It is customary
to use light or particle scattering experiments on such
systems to measure the spatial or temporal correlations,
yielding a scattering function or structure factor. In sys-
tems which can be described by an order-parameter, the
order-parameter structure factor (OPSF) has traditionally
been the quantity of interest, as it is easily measurable
experimentally and is well-defined mathematically, mak-
ing comparison between theory and experiment possible.
In principle, the OPSF contains much of the structural
information of the system’s state at a given time. How-
ever, simulations of the well-known [1] model A system,
described below, show that some fundamental configura-
tional information is not readily (if at all) visible with the
OPSF. Experimental methods for measuring the ICAF or
ICSF do not seem to exist at present. Results discussed
here show a clear need for such experimental measurement
methods.

Hohenberg and Halperin in the late 70’s proposed
a classification for several types of pattern-forming dy-
namics for which a field-theoretic description existed [2].
One of the classes, labeled model A, is that of dissipa-
tive dynamics for a single uncoupled non-conserved order-
parameter φ. The order-parameter could be for instance
the local magnetization in an Ising ferromagnet, i.e. an
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idealized ferromagnet in which the magnetization of any
molecule can take only two values, either +1 (up) or
−1 (down). Model A is described by a Time-Dependent
Ginzburg-Landau (TDGL) equation relating the tempo-
ral and spatial variations of the order-parameter of the
system:

M−1 ∂φ

∂t
= φ− φ3 + ξ2∇2φ (1)

where M and ξ are positive phenomenological constants
determining the time-scale and interface length-scale of
the dynamics, respectively. Some phenomenological pa-
rameters have been scaled out. In this equation, there is no
constraint on the average order-parameter per unit area
as a function of time. This differs from the well-known
model B which describes spinodal decomposition in bi-
nary mixtures [1], and for which the order parameter is
conserved.

Under appropriate conditions, such as a critical
quench, model A dynamics is characterized by the for-
mation of convoluted, interpenetrating domains of two
phases. The domains are separated from one another by
sharp interfaces, i.e. sharp on the length-scale of the do-
mains but smooth and of finite-width on the length-scale
of the molecules of the system [3]. Once the interfaces have
formed, the system enters the so-called scaling (i.e. late
stage) regime, where the dynamics is strongly non-linear.
Note that the width of interfaces remains approximately
constant throughout the late-stage regime, and is roughly
5ξ. In this regime, the system seeks to decrease the amount
of interface via interface motion.
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There are several interesting aspects to the dynam-
ics during the late-stage regime, but for the purposes of
this article we recall only two of them. First, experiments
and numerical simulations observe self-similar dynamics,
whereby the system state at a given time is statistically
the same as that at a later time, if space is properly
rescaled. The minimal condition for this is that the dy-
namics must have the same time-dependence on all length-
scales, so that all dynamical lengths can be expressed in
terms of one arbitrarily chosen reference length-scale L(t)
which encompasses the unique time-dependence. The sec-
ond important characteristic of model A dynamics is that
L(t) ∼ t1/2.

Mathematically, the OPSF is written

Sφ(k, t) ≡
1

A
〈φ̂(k, t)φ̂(−k, t)〉 (2)

where A is the system area, φ̂(k, t) is the Fourier transform
of the order-parameter φ(x, t) at time t, and the angle
brackets denote, as usual, an ensemble average over all
possible initial system configurations. Sφ(k, t) gives the
statistical intensity of each mode of the order parameter
field φ, i.e. the importance of domains whose coarse size is
2π/|k|. Sφ(k, t) itself is the Fourier transform of the two-
point equal-time order-parameter correlation function

Gφ(x, t) ≡ 〈φ(x0 + x, t)φ(x0, t)〉, (3)

which is a measure of the spatial correlations in the order-
parameter field at a given time. The main characteristics
of Sφ(k, t) for model A are a maximum at k = 0, and

for large k, Sφ ∼ |k|−(d+1), where d ≡ dimensionality of
space. This power-law tail is known as Porod’s law and is
a direct consequence, as shown by Porod [4], of the sharp-
ness of interfaces. The k = 0 dominant mode indicates
that the probability of finding larger domains increases
with the (coarse) size of the domain, and hence there is
no typical coarse size for the domains. This is in stark con-
trast to model B dynamics, where Sφ(k, t) shows a peak
at non-zero k.

The most important consequence of self-similar dy-
namics is that Sφ(k, t) taken at different times during the
scaling regime can be rescaled in amplitude and k, using
L(t) described earlier, to fall on one, universal and time-
independent curve Sφ(y), with y ≡ |k|L(t) (hence the de-
nomination of “scaling” regime). L(t) can be computed,
for instance, from any moment of Sφ(k, t). Regardless of
how it is computed, it will always have the same time de-
pendence, within a multiplicative factor. The unique time
dependence has lead to the conclusion that a typical, or
dominant, length scale exists in model A dynamics. But
the arbitrariness of the multiplicative factor has eluded at-
tempts at computing or even identifying its physical origin
from the order parameter correlation functions. Here, we
solve this problem by focusing on the dynamics at the
domain interfaces.

Indeed, the late time dynamics of model A is known to
be dominated by the motion of interfaces which decouple
from the interior of the domains. The interface dynam-
ics is curvature driven according to the Allen-Cahn re-
sult [5]: the interface velocity at a given interfacial point
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Fig. 1. Parametric representation of an interface in the plane,
as a function of arclength s along the interface.

is proportional to its curvature at that point; the propor-
tionality coefficient is Mξ2 where the phenomenological
constants M and ξ are respectively the mobility and in-
terfacial width (assumed time independent at late times).
While much has been written about this interface dynam-
ics, it pertains only to the behaviour normal to the inter-
face. In contrast, correlations along the interfaces as they
evolve have to our knowledge not been explored. We report
here for the first time some new results for the space and
time dependent curvature-curvature correlations along the
interface.

2 Results

An interface I in the plane can be represented parametri-
cally by a set of vectors R(s) = (x(s), y(s)) defined rela-
tive to an arbitrary origin, as in Figure 1. The parameter
s is the arclength along the interface. In this notation, the

curvature at point s is K ≡ ∂2R
∂s2

.
The generic definition of the ICAF is

GK(s, t) ≡ 〈K(0, t) ·K(s, t)〉 (4)

where K(s, t) is the curvature of an interface as a func-
tion of arclength position s along the interface and time
t. Numerically there are at least two ways of computing
GK(s, t), assuming the interfaces are discretized homoge-
neously with a mesh of size∆s. They both use equation (4)
for interface i, which takes the form

GKi(s, t) =
1

ni(t)

ni(t)∑
j=1

Ki(sj , t) ·Ki(sj + s, t) (5)

where s is assumed an integer multiple of∆s, the subscript
i refers to interface i, ni(t) is the number of points on the
interface, and Ki(sj , t) is the curvature of the interface at
some point sj = j∆s, at time t.

The first method is a simple weighted average of all
GKi(s, t), giving more importance to longer interfaces. We
denote it by G1

K
(s, t),

G1
K

(s, t) ≡
1∑NI(t)

i=1
′ni(t)

NI(t)∑
i=1

′
ni(t)GKi(s, t) (6)
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Fig. 2. Domain interfaces in a typical two-dimensional model
A system.

where the prime superscript in the sum indicates that only
interfaces longer than a length of 2s are used and NI(t) is
the number of interfaces used.

The second definition, which uses the same notation
as G1

K
(s, t), is

G2
K(s, t) ≡

1∑NI(t)
i=1

′ni(t)

NI(t)∑
i=1

′
ni(t)

(
GKi(s, t)

GKi(0, t)

)
, (7)

i.e. G2
K(s, t) is a weighted average of the normalized ICAF

for each individual interface. Hence G2
K

(s, t) ≤ 1 for all s,
with exact equality at s = 0, and can be interpreted as the
average relative value of curvature a distance s on either
side of a point where the curvature is K. Equation (6)
turned out to be more suitable for analytical calculations,
while equation (7) gives smaller statistical error numeri-
cally, but both measure the same correlation of local in-
terfacial curvature.

Numerical simulations of model A were done for flat
Euclidean systems of sizes 100 × 100 and 200 × 200,
with periodic boundary conditions. Forty random order-
parameter configurations were generated and evolved by
integrating equation (1) using a standard Forward-in-
time/Centered-in-Space Euler integration scheme [6], from
t = 0+ to t = 1000. The system mesh size ∆x used was
1, and the time step ∆t = 0.03. The results were checked
to be independent of system-size. Average computation
time required was 8 hours for the 40 runs on an HP735.
A typical interface configuration is shown in Figure 2.

Computing K is very difficult if the bulk descrip-
tion (Eq. (1)) is used, as it requires extracting interfaces
from the order-parameter configurations by systematically
scanning these and finding all interfaces, splining them for
smoothness and finally computing K at regular intervals
along an interface. An interface description, which evolves
the interfaces directly via an interface equation [7], allows
for direct computation of K and therefore GK(s, t), while
the runtime can be decreased by a factor of 10 for flat
systems and 50 to 100 for the curved (i.e. non-Euclidean)
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Fig. 3. Ξ2
K(x), from bulk configurations at various times. Lo(t)

was defined as the first zero of G2
K(s, t).

model A [7]. Such a discretized interface description pro-
duced results closer to the analytic predictions than did
the discretized bulk description (cf. Discussion section),
but both yielded otherwise identical results.

The ICAF was computed at several different times dur-
ing the scaling regime, t = 17 to t = 300. The rescaled
ICAF, denoted

Ξ2
K

(x) ≡ G2
K

(Lo(t)
−1s, t), x ≡ Lo(t)

−1s, (8)

is shown in Figure 3, where the scaling length-scale Lo(t)
was arbitrarily defined as the first zero of G2

K(s, t). The
vertical error bars, not shown for clarity, are 0 at the ori-
gin and increase roughly linearly to 0.01 in the vicinity of
the minimum, then further increase to 0.02 at s = 200.
The error was computed by making an analogy between
the curvature K and magnetization m of one-dimensional
Ising magnets of different lengths [8]. The error for dis-
tance s is then the weighted average of the deviation
of each magnet’s value of 〈m(0)m(s)〉 from the value of
〈m(0)m(s)〉 for the ensemble of magnets. G2

K
(s, t) corre-

sponds to 〈m(0)m(s)〉. This was deemed the most reason-
able method of error calculation, given the values of K
along an interface, and therefore the statistical error in
products of K, are correlated.

3 Discussion

The salient features of the curves in Figure 3 are the nice
superposition of the Ξ2

K(x) (within error bars), the power
law for Lo(t), the negative autocorrelation for s > Lo(t),
and finally the Gaussian form for distances much smaller
than Lo(t). The perfect dynamical scaling indicates that
the ICAF correctly captures this very important charac-
teristic of model A dynamics, and that the number of runs
and system size used give an accurate and reliable mea-
sure of G2

K(s, t). The power law in Lo(t) is found through
linear regression to be 0.45± 0.02, very close to the the-
oretical value [9] of 1/2 (the interface description gives a
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power-law even closer to the analytic prediction of 1/2,
namely 0.48± 0.01, as it is less sensitive to discretization
effects). G2

K(s, t) therefore also captures to a high accu-
racy the well-known power-law behavior characteristic of
model A dynamics.

Over short distances (up to roughly Lo(t)/2), GK(s, t)
can be checked to be Gaussian. A Gaussian form for a
correlation function was shown by Porod to be a charac-
teristic of fluctuating systems without sharp variations [4].
A plot of K(s) (not shown) indeed looks very much like
a snapshot of a one-dimensional fluctuating “membrane”,
smooth and without any sharp variations (cf. Fig. 2). A
first attempt at obtaining an approximate analytical ex-
pression for G1

K(s, t) is exposed here, based on a method
developed by Rogers in his Ph.D. thesis [10], in the context
of model B, but never tested numerically.

Consider the model A curvature equations [7] in a flat
system: (

∂K

∂t

)
α

=
∂2K

∂s2
+K3 (9)

(
∂
√
g

∂t

)
α

= −
√
gK2 (10)

where s is the arclength along an interface, α is a param-
eterization of the interface in which every point has con-
stant coordinate α (exploiting the fact that the interface
moves perpendicularly to itself [7]), and g is the metric
on the interface, relating the elements of length in both
gauges (s and α):

ds =
√
g dα. (11)

Now let us make the following mean-field approximation:(
∂
√
g

∂t

)
α

' −
√
gh(t) (12)

h(t) ≡
1

L

∫
K2 ds (13)

where L is the total length of the interface. This approxi-
mation becomes exact for circular domains. Furthermore,
neglect the cubic term of equation (9). This term is dom-
inant for circular domains. For convoluted domains, nu-
merical testing indicates K3 is comparable to the dif-
fusion term for as many as half the interface points.
Therefore, the two approximations work in opposite direc-
tions, one becoming exact for circular domains, the other
getting better for convoluted domains. On short length-
scales, however, convoluted domains are locally circular,
but the K3 term should be negligible since convoluted do-
mains see their curvature decrease rather than increase.
Equation (9) then becomes(

∂K

∂t

)
α

=
1

g(t)

∂2K

∂α2
· (14)

Going to Fourier space and making use of a change
of variable for time, g(t)dt′ = dt, the integration can

now be performed, and the curvature structure factor χq
obtained:

χq(t
′) ≡

1

N
〈Kq(t

′)K−q(t
′)〉 =

〈Kq(0)2〉

N
e−2q2t′ (15)

where N is the number of points on the interface and q
is the wavenumber in the reciprocal space of α. Assuming
all Kq have equal amplitude at t = 0, a backwards Fourier
transform yields

G1
K

(α, t′) =

√
π

8t′
e−α

2/8t′. (16)

Now t′ must be found as a function of t. This can be done
by noting that h(t) is equal to G1

K(0, t′(t)), i.e. h(t) =√
π

8t′ . Also,

t′(t) =

∫ t

0

dt

g(t)
·

The equation for the metric is therefore(
∂g

∂t

)
α

= −2g

√
π

8

(∫ t

0

dt

g(t)

)−1/2

. (17)

This has g(t) = t−1/π as solution, so that t′(t) = πt2/2.
From equation (11), α = s/

√
g = s

√
πt. Substituting in

equation (16),

G1
K(s, t) =

1

2t
e−s

2/4t, (18)

which is Gaussian, has time-dependencies consistent
with power-law growth in model A dynamics (the
amplitude of G1

K
(s, t) has units length squared), and

dynamically scales, but does not capture the nega-
tive autocorrelations at longer distances. Quantitatively,
numerical simulations find the amplitude of the Gaussian
to go as [2(1.1 ± 0.1)t]−1, in very good agreement with
equation (18), whereas the width is smaller than the
prediction (18) by about a factor of two.

Of course, the two approximations that allowed for
the calculation of GK(s, t) are reasonable only on short
length-scales, so it is not surprising that equation (18)
does not capture the dominant wavelength of undulations
of the interfaces. Also, all Kq(0) were assumed equal. This
is obviously wrong, since even at the earliest times the
curvature structure factor (the Fourier transform of the
GK(s, t)) shows a well-defined peak at a non-zero q mode.
If the correct χq(0) is used, then the analyticalGK(s, t) will
have a dip at least at early times. Therefore the strongest
approximation may yet lie in the χq(0) rather than the
mean-field and linearization approximations, though this
seems unlikely.

The most interesting feature of the ICAF is undoubt-
edly the relatively large negative autocorrelation apparent
at distances s > Lo(t). Hence the rescaled ICSF SK(y)
(Fourier transform of Eq. (8)) shows a well-defined peak
at a non-zero value of wavevector y ≡ 2πLo(t)/s, as seen
in Figure 4. The functional form can be fitted very nicely
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Fig. 4. The rescaled curvature structure factors SK(y), as a
function of y ≡ 2πL(t)/s, for the same times as in Figure 3
(joined into one curve for clarity). Fit gives a = 110, b = 3/2
and c = 4/3 with 3% error.

to aybe−cy for 0 < y . 5, with a = 110± 3, b = 3/2± 0.01
and c = 4/3± 0.04, though no theoretical justification for
this is known to us at present. The maximum of this func-
tion occurs at y = b/c = 9/8 ± 0.04, which is extremely
close to 1. The null value of SK(0) stems from the null area
under the G1

K(s, t) curves, itself a direct consequence of∫
Ki ds = 0 (19)

for any interface i (when the system has periodic boundary
conditions), a constraint akin to a conservation law. The
peak in SK(y) indicates that there is a dominant wave-
length for undulations of the interfaces. This dominant
spatial mode is a feature which remains as yet either hid-
den in or inaccessible via the order-parameter structure
factor. To our knowledge, it is the first time that it is
clearly identified. The closeness of y to 1 also indicates
that the first zero of G1

K
(s, t) corresponds to the dominant

spatial oscillation mode for curvature undulations, i.e. the
typical arclength distance from a point on the interface at
which the curvature changes sign.

The dominant length-scale Lo(t) for model A dynamics
thus seems to have a different nature than, for instance,
that of model B dynamics, whose OPSF itself shows a
peak at non-zero wavevector. In the literature on model
A and B dynamics one loosely speaks of this dominant
length-scale as an average or typical domain size. How-
ever the concept of domain size is well defined only when
the domains are morphologically disconnected or, if not, if
they have a well-defined width. As discussed earlier in this
article, model B satisfies this, but for model A only suf-
ficiently off-critical quenches create domains whose bub-
ble morphology lends itself to the definition of a “typical
domain size”. The ICAF for model A shows that a dom-
inant length-scale is present in the spatial undulations of
the interfaces rather than in the size of the domains. The
difference is schematized in Figure 5. We have referred
to this dominant length as Lo(t), to differentiate it from

B

A

Fig. 5. A domain in model A. The width of the OPSF should
give an indication of how often domains of size A occur. The
line B is what the dominant length-scale is, as given by the
ICAF: roughly, the dominant radius of curvature.

the degenerate L(t). An interesting question this raises is
whether model B interfaces would exhibit not only the
dominant length of domain size, but a dominant length of
interface undulation as well.

The presence of a dominant undulation wavelength im-
plies that model A interfaces may be called “random” only
approximately [11], since truly random interfaces have an
uncorrelated ICAF rather than the one found here. Sev-
eral analytical methods developed to derive the scaling
function for the OPSF make use of Gaussian assumptions
about the order-parameter field as well as the randomness
of the interfaces [11]. Though for model A these Gaussian
assumptions appear to work, the non-Gaussian curvature
correlations may provide a clue into the break-down of
Gaussian assumptions for the more complex model B.

An important difference between the OPSF and the
ICSF is that the latter distinguishes between the two do-
main morphologies of model A: bicontinuous for a critical
quench, bubble for strongly off-critical quenches. Indeed,
the OPSF is qualitatively the same for both morpholo-
gies, whereas for the bubble morphology the negative cur-
vature autocorrelations in the ICAF are non-existent: the
peak in the ICSF shifts to y = 0 for sufficiently off-critical
quenches. The difference may be due to the absence of
phase information in the OPSF.

4 Conclusion

We discussed several features of model A interfacial dy-
namics via the ICAF (interface curvature autocorrela-
tion function) GK(s, t). Two notable characteristics of
the ICAF were the Gaussian form near s = 0, and the
dip below zero beyond a certain distance. Though time-
dependent lengths can be defined from the OPSF, and
the existence of a typical and uniquely defined dynam-
ical length Lo(t) can be inferred from the universality
of the OPSF, the peak at zero wavenumber prevents us
from uniquely deducing Lo(t) and identifying its physi-
cal meaning. However the ICAF, through the existence
of a zero, or equivalently the ICSF, through the location
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of its maximum, clearly answers both questions. The scal-
ing length-scale for model A systems is hence in the in-
terface undulations of the domains. This suggests that the
scaling length-scale in model A dynamics is of a differ-
ent nature than the domain-size length-scale of model B
dynamics, where the order-parameter is conserved. It is
also clear that the OPSF hides some interesting charac-
teristics of model A interface dynamics and its domain
morphology. Experimental methods for measuring the in-
terface curvature autocorrelations could become useful in
better characterizing the dynamics of some pattern form-
ing systems where sharp interfaces are present.
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O. Schönborn, Phase-ordering kinetics on curved surfaces,
Ph.D. thesis, University of Toronto, Canada, 1998.

8. H. Müller-Krumbhaar, K. Binder, J. Stat. Phys. 8, 16
(1973).

9. A. Bray, Adv. Phys. 43, 357 (1994).
10. T.M. Rogers, Domain Growth and Dynamical Scaling dur-

ing the late stages of Phase Separation, Ph.D. thesis, Uni-
versity of Toronto, Canada, 1989.

11. C. Yeung, Y. Oono, A. Shinozaki, Phys. Rev. E 49, 2693
(1994); H. Toyoki, Phys. Rev. B 38, 11904 (1988); T. Ohta,
D. Jasnow, K. Kawasaki, Phys. Rev. Lett. 49, 1223 (1982).


